
Advanced Hash Algorithms with Key Bits Duplication for IP Address Lookup

Christopher Martinez
Department of Electrical and Computer Engineering

The University of New Haven

Wei-Ming Lin
Department of Electrical and Computer Engineering

The University of Texas at San Antonio

Abstract

Hashing technique have been widely adopted for various
computer network applications such as IP address lookup
and intrusion detection, among which XOR-hashing is one
of most popular techniques due to its relatively small hash
process delay. In all the current commonly used XOR-
hashing algorithms, each of the hash key bits is usually
explicitly XORed only at most once in the hash process,
which may limit the amount of potential randomness that
can be introduced by the hash process. This paper looks
into the possibility in duplicating/reusing key bits to inject
additional randomness into the hash process thus enhancing
the overall performance further. However, when a key bit
is reused, newly induced correlation arises among resulted
hash bits where key bits are shared which may easily offset
the intended benefit from bit duplication. The novel hash
technique introduced in this paper shows how to intelligently
apply bit duplication while minimizing the amount of corre-
lation induced in the duplication process.

1. Introduction

A complete survey and complexity analysis on IP address
lookup algorithms has been provided in [10]. A performance
comparison of traditional XOR folding, bit extraction, CRC-
based hash functions is given in [3]. Although most of
the hash functions, such as the simple XOR folding and
bit extraction, are relatively inexpensive to implement in
software and hardware, their performance tends to be far
from desirable. CRC-based hash functions are proved to be
excellent means but are more complex to compute. Some
schemes are hardware based that achieve an improvement
in IP look-up by maintaining a subset of routing table in a
faster cache memory [5], [6], while others are software based
which improve their search performance mainly through
efficient data structures [7], [11]. Waldvogel et al. [12]
proposed an address look-up scheme based on a binary
search of hash table, requiring an extra update process
in a look-up table. Other hashing algorithms have also
been widely adopted to provide for the address look-up
process [1], [2], [9], [13]. All hashing algorithms inevitably
suffer from unpredictable complexities involving conflicts
among the data with the same hash result (hash collision).

A search for matching a given query could end up with a
sequential search through the number of maximal conflicts
in the database. This may result in a long search process
time that exceeds the time limitation imposed by design
specifications. The lower the number of hash collisions is
created by the hash algorithm the better the performance
becomes. Performance of a hashing algorithm is usually
determined by two measurements: the MSL (maximum
search length) and ASL (average search length) with the
former one indicating the largest number of hash collisions
for any single hash value and the latter denoting the average
number of hash collisions for all hash values.

Hashing techniques using simple XOR operations have
been very popular in applications where timely response is
critical due to its relatively small hash process delay. In all
the current commonly used XOR-hashing algorithms, when
deriving the hash value, each of the hash key bits is usually
explicitly XORed only at most once in the hash process,
which may limit the amount of potential randomness that
can be introduced by the hash process. When a key bit is
reused (duplicated) for XORing in generating different hash
value bits, there exists a potential that the overall randomness
of new hash result may increase. This paper looks into
the possibility in duplicating key bits to inject additional
randomness into the hash process thus enhancing the overall
performance further. However, when a key bit is reused,
a newly induced correlation arises among hash bits where
key bits are shared which may easily offset the intended
benefit from duplication. This paper proposes a novel hash
technique by intelligently applying bit duplication while
minimizing

2. XOR-Hashing Methodology

Throughout this paper, the database under discussion is
defined as consisting of M = 2m entries with each entry
having n bits in length. It can also be viewed as having n
M -bit vectors with each vector consisting of each respective
bit from all entries. An example of n = 8 and m = 3
is shown in Figure 1(a). The target hashing process is to
hash each of the n-bit entries (an IP address or part of it
in this application) into an m-bit hash value. These hash
values need to be distributed as evenly as possible so as to
minimize the eventual search time.

2009 Fifth International Conference on Networking and Services

978-0-7695-3586-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNS.2009.68

137

2009 Fifth International Conference on Networking and Services

978-0-7695-3586-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNS.2009.68

137

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 28, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

VBit Vector 5

1 0 1 0 1 0 1 0
DB Entry

#0

5 4 3 2 1 067

0 10 0 0 1 1 1#1
0 1 1 00 1 0 0#2
0 0 1 0 1 0 1#3
0 0 1 0 0 1 0 1#4
1 0 1 1 0 1 0 1#5
0 1 0 1 1 1 0 0#6
0 1 0 0 0 1 11#7

Bit Position

0

= 4 2 6 4 4 4 2 2d 2

1

1

1
0
0
0
0
0
1

0

2

1
1
1
1
1
1
0

4

1

3

0
0
0
0
0
1
0

4

0

4

0
0
0
0
1
1
0

4

1

7

0
0
0
0
1
0
0

4

0

0

1
0
1
1
1
0
1

2

1

5

1
1
1
1
1
0
1

6

0

6

0
1
0
0
0
1
1

2

DB Entry
#0
#1
#2
#3
#4
#5
#6
#7

Bit Position

=d

(a) (b)

Figure 1. (a) Calculation of d Values (b) Sorted
Database by d Value

XOR operator has been widely used for hashing and
known to be an excellent operator in enhancing random-
ness in distribution. It also possesses a nice characteristic
allowing for analytical performance analysis and thus better
algorithm designing. A commonly used hashing technique
is to simply hash the n-bit key into m-bit hash result
through a simple process XORing every distinct n

m key bits
into a final hash bit. Such a random XORing process (so-
called “Group-XOR” in this paper) may not always lead
to a desirable outcome. A much more effective hashing
approach is proposed in [4] by preprocessing (and sorting)
the database according to a parameter, the d value, that
reveals a very useful insight into the degree of uniformity
of the database. The d value of a bit vector is the absolute
difference between the number of 0’s and 1’s in it (as shown
in Figure 1(a)). Translated to effect of hashing, in the final
m-bit hash result, a bit of d = 0 gives an even hashing
distribution (i.e. evenly divided) among the entire address
space allowing other bits to hash to it; while a bit of d = M
will limit the hashing to only one half of the hash space.
This leads us to employing a simple pre-processing step in
re-arranging the n bit vectors according to their d values
sorted into a non-decreasing order as shown in Figure 1(b).
This sorted sequence then gives us an “order of significance”
according to which each bit should be utilized.

A XOR-hashing algorithm based on the principle of d
value is presented in [8]. This algorithm, the d-IOX (d
value in-order XOR folding), involves the aforementioned
preprocessing/sorting step before applying the simple in-
order folding XOR hashing. Figure 2 shows the folding
process in the d-IOX algorithm, with each of the Hi’s
referring to a hashing function in deriving a hash value bit.
The d-IOX proves to be much better than the simple random
Group-XOR approach by registering an improvement in
ASL and MSL up to 30% in randomly generated database
and up to 80% in real IP database.

3. Limitation in Non-Duplication XOR Hash-
ing

First an experiment is performed to understand the effect
in enhancing randomness by XORing a variable number

0

a b c

H1H2H

c

b

a

1 0 7 4 3Bit Position
= 2 2 2 4 4 4 4 6d

526

Figure 2. In-Order XOR (d-IOX) Hash Algorithm

of bits. These bits are randomly generated such that the d
value for each bit is uniformly distributed in [0, 210 − 1].
The benefit in XORing more bits is shown in Figure 3
in which the resulted d value is presented for a given
number of XORed bits (NXB) to be XORed together. With
bits relatively skewed significantly due to the non-uniform
distributed database, randomness quickly becomes saturated
as NXB reaches about eight. When the bits are not as

300300300

250250250

200200200

ee
u

150lu 150a
l 150a

v
a

 v
d 100d 100d 100

505050

00

2 3 6 8 9 0 2 32 3 4 5 6 7 8 9 10 11 12 13 142 3 4 5 6 7 8 9 10 11 12 13 14
NXBNXBNXB

Figure 3. Analysis of NXB on d Values

skewed, one can expect the randomness from XORing tend
to saturate even earlier. For such a data set with m = 10 and
n = 30, a natural XOR hashing process leads to an NXB of
3 without any duplication, and the expected d value for each
hash value bit drops from the original expected value of 512
(29, half of the range) for each hash key bit to 136. After
this, it looks as though one can simply reuse (duplicate) the
hash key bits to achieve more drop in the d value (e.g. two
more NXB’s would lead to a d value of about 50), which is
actually far from the fact.

Note that when there is no bit duplication under standard
XOR hashing, no bits are shared in XORing to lead to
different hash value bits. That is, each hash value bit
comes from XORing a distinct set of hash key bits. If one
intends to reuse some key bits for XORing, then the overall
effectiveness may be compromised due to the sharing. Here
a notion is introduced to illustrate the induced effect from
bit duplication. In obtaining two hash key bits, when there
exist common bits between the two sets of hash key bits
for their XORing, an Induced Duplication Correlation (IDC)
arises between the two hash value bits. The reason that this
correlation is regarded as “induced” because it is created
through the artificial bit-sharing from duplication, in contrast
to the inherent correlation that may already exist in the hash
key bits. Figure 4 gives a simple illustration for IDC, where
each of the letters (from A to F) denotes a distinct hash key
bit.

138138

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 28, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

A B C

D E F

A B C

AC

Bit 0 Bit 2 Bit 0 Bit 1 Bit 2
HashHashHash

Bit 1
Hash HashHash

No IDC

B

IDC

D E F

Figure 4. Induced Duplication Correlation (IDC)

The figure on the left shows that a hash value bit is ob-
tained by XORing two distinct hash key bits, while the figure
on the right shows that through duplication IDC occurs when
every pair of hash value bits have some common bits being
XORed. When more bits are duplicated for XORing, higher
IDC tends to ensue.

4. Simple Bit-Duplication XOR Hashing

We first introduce several simple bit-duplication proce-
dures to understand the their potential effectiveness and
deficiencies. For the sake of simplicity in discussion, all
are to be based on the example shown in Figure 5 with
n = 8 and m = 4 and a baseline XORing with d-IOX
without duplication. Note that a very important reason in

d value

A B C D W X Y Z

Hash Key

largesmall

hash

A B C D

W X Y Z

bit 0
hash

bit 1
hash

bit 2
hash

bit 3

Figure 5. XOR Hashing with No Duplication

using the d-value-sorted bit sequence as the base is that one
now may choose to duplicate the bit(s) with the smallest
d value to maximize the benefit of duplication. This comes
from an already-established theory from [4] which states that
XORing with a bit with a smaller d value is more likely to
lead to a smaller d value than XORing with a bit with a
larger d. That is, in the example in Figure 5, bit A will be
the the best candidate to duplicate.

Three different bit-duplication approaches are presented
here to study patterns for potential beneficial mechanisms.
Note that only one extra duplicated bit is considered here
for XORing to produce each final hash value bit.

hash

A B C D

W X Y Z

A A A A

bit 0 bit 1 bit 2 bit 3
hash hash hash hash

A B C D

W X Y Z

A A AB

bit 0
hash

bit 1
hash

bit 2
hash

bit 3

D

A B C D

W X Y Z

A B

bit 0
hash

bit 1
hash hash

bit 2
hash
bit 3

C

(a) (b) (c)

Figure 6. Three Simple Duplication Approaches: (a)
Self-Duplication (b) Exchange-Duplication (c) Cycle-
Duplication

• Self-Duplication
The “self-duplication” process first follows a normal
non-duplication XOR hash algorithm (Figure 5) and
then picks a bit (bit A for the best result) to be
duplicated for XORing with each of the four (m) hash
value bits, as shown in Figure 6(a). This duplication
process not only introduces IDC among all the bits due
to the sharing of bit A, but also leads to an even worse
scenario – in the XORing for hash bit 0, two A bits are
used, which essentially nullifies the randomness from
XORing bit A, since A ⊕ A = 0. Self duplication can
be unexpectedly destructive due to the “nullification”
of the one bit – a loss of one additional potential bit
for randomness. In this particular example, this leads
to a hash value bit (bit 0) being degraded to a simple
bit extraction (with bit W).

• Exchange-Duplication
In order to render a quick fix on the nullification
problem from the self-duplication approach, one may
choose to pick one more bit, in additional to the orig-
inally duplicated one, solely for the XORing to avoid
nullification. This approach is to be referred as the
“exchange-duplication”, demonstrated in Figure 6(b),
where the second bit B is picked for this purpose.
Although this approach eliminates the previous nulli-
fication problem, but it introduces another degree of
IDC. From the example, the first two bits (bits 0 and
1) end up having an even higher IDC in between them
(than the regular IDC induced, e.g. in between bits 2
and 3) since they share two bits in common (A and
B). Since A ⊕ B = B ⊕ A, essentially the effect of
this higher degree of IDC downgrades the XORing for
these first two bits from XORing three bits to become
XORing two bits with a normal degree of IDC.

• Cycle-Duplication
None of the duplication approaches presented so far
provides a “uniform” way of duplication without either
increasing IDC or downgrading the XORing for some
bit(s). One regular way to handle this is to use the
so-called “cycle-duplication” in which m bits from the
original hash key are selected for duplication with each
duplicated exactly once and mapped into the hash bit
positions in a rotated fashion. One example for this
is shown in Figure 6(c) where the m duplicated bits
are taken directly from one segment of m-bit hash key
bits (the ones with the smallest d values) and rotated
to the very next bit position for XORing. With this,
nullification problem is completely eliminated and no
downgrading in XORing exists any more. This results
in a very uniform IDC among all pairs of two bits –
every pair of two bits have exactly one hash key bit
shared for XORing.

To show the potential improvement of duplication, a

139139

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 28, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

simple simulation is conducted to measure the performance
of each of the three duplication approaches compared to the
one without duplication. Figure 7 shows the performance
comparison in terms of MSL and ASL among the tech-
niques. All three duplication techniques show improvement

30

40

50

No Dup

Self

0

10

20

10 11 12 13 14 15 16

Self

Exchange

Cycle

2.3

2.5

2.7

2.9

No Dup

Self

1.5

1.7

1.9

2.1

10 11 12 13 14 15 16

Self

Exchange

Cycle

(a) (b)

Figure 7. Performance Comparison in Terms of (a) MSL
(b) ASL Among the Different Duplication Approaches on
Randomly Generated Data

in the hash results. The self-duplication one has the largest
amount of IDC while still leading to a reduction of 15% both
in MSL and ASL. The cycle-duplication one, as expected,
has the smallest amount of IDC with a reduction up to 50%
in MSL and 27% in ASL. This preliminary test clearly shows
that the cycle-duplication approach can be a very promising
platform where even better bit-duplication techniques can be
built upon.

5. Minimal IDC Duplication

All the duplication approaches discussed in the previous
section assume to duplicate only one additional bit for
XORing for each hash value bit. It is possible that more
bits can be duplicated to allow for XORing to lead to more
benefits. In order to take on this extension, several important
observations from the previous analysis need to be noted
carefully.

First, as mentioned earlier, the “cycle-duplication” ap-
proach seems to be a natural one to be based on for extension
due to its uniformity in IDC and regularity in duplication
pattern. The next natural step is to consider having more
bit duplication process(es) added to the “cycle-duplication”
basis, while avoiding the problems of nullification and
downgrading. The nullification problem is relatively easy
to avoid by not XORing identical bit(s) for any given hash
result bit. However, if the next step of bit duplication is
not employed carefully, the effect of downgrading will arise
again easily. For example, built from the case of “cycle-
duplication” in Figure 6(c), another set of m bits (A, B,
C, and D) are duplicated again and “cycled” with another
one-bit shift similar to the first step of duplication. Figure 8
illustrates such a case. With this, each pair of hash bits will
have two key bits shared in their XORing (e.g. bits 0 and 1
sharing A and D), thus leading to a downgrading problem, or
simply a higher degree of IDC. Note that, in our discussion

= BITS IN COMMON

A B C D

W X Y Z

A B

bit 0
hash

bit 1
hash hash

bit 2
hash
bit 3

CD

A BDC

Figure 8. An Example of Downgrading from Additional
Duplication

here, the same segment (the one with the smallest d values)
is used for multiple duplication due to its low d values. Using
another different segment (a segment of bits with larger d
values) for the additional duplication has shown a far less
potential for performance improvement due to an analysis
result from [4] showing that XORing with bits of larger d
values may even degrade the performance.

Therefore, in order to avoid any kind of downgrading,
one has to first decide if there are sufficient number of
bits for further duplication. As shown in the example in
Figure 8, one may soon realize that it is impossible to
duplicate the segment the second time without running into
the downgrading problem. That is, the four (m) bits are
not sufficient to support two times of duplication. This
problem can be generalized into a question: “Given m, the
number of bits to be cycle-duplicated, how many times can
it be duplicated without causing the downgrading problem?”
Viewing from the other direction of this problem, one
may also ask: “In order to duplicate X times without the
downgrading problem, what is the minimal m required?”
First of all, the condition that needs to be satisfied to avoid
the downgrading problem can be easily formulated into a
scenario – at most one bit sharing exists in between any
pair of hash value bits. In order to duplicate X times while
avoiding multiple bits of sharing, the following condition
has to be satisfied

m ≥ X · (X + 1) + 1.

Proof:

When the same m bits are to be duplicated X
times, it means that each hash bit position is
to be produced by XORing the original bit and
X duplicated bits (by disregarding the key bits
irrelevant to our discussion here, e.g. key bits W ,
X , Y nd Z in Figure 8). Note that all these
X+1 bits have to be distinct to avoid nullification.
Figure 9 shows an example when the original m-
bit hash key are to be duplicated two times, i.e.
X = 2. Take the case of bit position 0 – bit A,
G and E are three (X + 1 = 3) distinct bits, with
bits G and E duplicated into this bit position. In
order to ensure no multiple bits of sharing among
all m bits, the three (X + 1) bits are not allowed

140140

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 28, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

bit 3

hash hash hash hash hash hash hash
bit 1 bit 2 bit 3 bit 4 bit 5 bit 6

A
G
E

B
A
F

C
B
G A

C
D E

D
B C

E
F G

F
D

A

A xx

x x

x x

65

43

21A

hash
bit 0

hash hash
bit 1

bit 0

Figure 9. Number of Bits Needed for Two Duplications

to appear in the same column (bit position). Since
each of the three bits are to appear another two
times (X) in the other columns, the total number
of columns (m) has to satisfy

m − 1 ≥ X · (X + 1). (1)

Or simply, as shown in the figure, the three (X+1)
columns where bit A appears, there are six (X ·
(X + 1)) slots that require distinct key bits (in
addition to bit A) to fill. That is, given m, the
maximal number of duplication allowed without
causing multiple bits of sharing is governed by

X ≤ �
√

4m − 3 − 1
2

� (2)

The example in Figure 9 shows the minimal m re-
quired, m = 7 to allow for two bits of duplication.

A sufficient condition has thus been established for the
number of duplication steps that can occur given a size
of hash value m. What remains to be determined is an
algorithm to decide each of the X duplication patterns
to avoid any of the aforementioned problems. Although a
general algorithm is still not completely available, we have
managed to translate the problem into a problem of graphics
for easier visualization and processing. Let the set of the m
bit position indices be denoted S = {0, 1, 2, . . . , m − 1},
and these bits are to be duplicated X times such that
X satisfies the condition in Equation 2. For the sake of
simplicity without losing generality, assume that each of the
X duplicated sequences of the m bits are to be rotated
starting from a particular bit position to avoid the two
problems. We can simply focus on the bit 0 position of
each of the strings to analyze the whole pattern. That is,
the bit 0 position of the original string is at position 0. Let
the position of bit 0 of each of the X +1 strings be denoted
as sj where 0 ≤ j ≤ X . Figure 10 shows an illustration for
a case with X = 3 and m = 13, with 13 bit positions on
a circle. In this case, the four starting locations are s0 = 0,
s1 = 1, s2 = 3 and s3 = 9. With this notation, we can easily
show that, in order to avoid any nullification problem, the
following condition has to hold:

si �= sj, ∀i, j, 0 ≤ i, j ≤ m, and i �= j

2
4

9

0
12
10
4

1 2 3 4
0
11
5

1
12
6

2
0
7

3
1
8

5 6
5
3
10

7

11
4
6

8
7
5
12

9
8
6
0

10
9
7
1

11
10
8
2

12
11
9
3

Hash Value Bits

12 0

6 5

4

3

2

111

10

9

8

7

2

5

4

6

1
3

Figure 10. Three-Time Duplication with m = 13 Using
Cycle Duplication with One Bit in Common

which guarantees that no bit position has two identical bits
to be XORed. In order to avoid any sharing of multiple bits
(i.e. the downgrading problem), the following condition has
to be satisfied:

Dij �= Dkl, ∀i, j, k, l, 0 ≤ i, j, k, l ≤ m, and (i, j) �= (k, l).

where Dij denotes the “shorter” distance from position si

to position sj ; that is,

Dij = min((si − sj) mod m, (sj − si) mod m)

For example, between s1 = 1 and s3 = 9, their distance is

D13 = min((1−9) mod 13, (9−1) mod 13) = min(5, 8) = 5.

Essentially, this condition guarantees that the no two posi-
tions can share more than one bit in common.

Given m, there may exist more than one corresponding
X-time duplication patterns that satisfy the aforementioned
conditions. We have been able to show that feasible solu-
tion(s) can be found for any X up to four, i.e. with any m up
to 30. Note that, when multiple solutions exist, each solution
does not necessarily lead to the same hashing performance
due to the d value distribution after sorting. This proposed
duplication approach is thus named as the “Minimal IDC
Duplication” technique.

6. Simulation Results

Simulation runs are performed on randomly generated
data sets and real IP data sets to demonstrate the perfor-
mance improvement of the minimal IDC duplication XOR
hash technique over other techniques with no duplication.
The Group-XOR algorithm which XORs groups of random
key bits is the general base of our comparison, while the d-
IOX [8] aforementioned will serve as the reference as a non-
duplication technique (referred to as “No Duplication” in the
rest of our discussion), which the minimal IDC algorithm is
essentially based on.

141141

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 28, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

The simulation results for n = 32 and 10 ≤ m ≤ 16 are
given in Figure 11 using a data set randomly generated such
that the d value for each bit position is uniformly distributed.
Performance comparison among the three techniques are in
terms of MSL and ASL by taking an average of results
from 1,000 runs. The minimal IDC algorithm delivers a

25
30
35
40
45

Group XOR

0
5
10
15
20

10 11 12 13 14 15 16

No Dup

Min IDC

2.3

2.5

2.7

2.9

Group XOR

1.5

1.7

1.9

2.1

10 11 12 13 14 15 16

No Dup

Min IDC

(a) (b)

Figure 11. Performance Comparison in Terms of (a)
MSL (b) ASL on Randomly Generated Data Sets with
n = 32 and 10 ≤ m ≤ 16

vast improvement over the Group-XOR algorithm, up to
72% of reduction in MSL and 40% in ASL. True effect of
duplication is demonstrated by its results compared to the d-
IOX (No Duplication), showing a whopping 60% reduction
This result clearly demonstrates the potential of the proposed
duplication approach. What makes the duplication even more
promising is that the Minimal IDC Duplication continues to
increase its gain over the Group-XOR as m increases while
the non-duplication one (d-IOX) saturates its gain when m
reaches 13. This scenario may be explained by the fact
that when m ≥ 13, the Minimal IDC algorithm increases
its duplication to three times, thus further improving its
performance.

7. Conclusion

By duplicating and reusing hash key bits, our technique
further enhances the randomness from the best known XOR-
hashing techniques. Other potential applications of this ap-
proach include string matching, general database query, etc.
There still exist many potential extensions along this line
of research. This paper only approaches bit duplication in
a cyclic pattern, while a mixture of different patterns may
provide even more benefit. In addition, this paper examined
only induced correlation from the duplication without con-
sidering the inherent correlation already existing in the target
database, which may have a very significant impact on the
design of hash algorithms. By providing initial groundwork
for duplication in hashing, this paper has pointed out the
potential areas to improve hashing algorithms and new ways
to exploit specific characteristics of the target database.

References

[1] A. Broder and M. Mitzenmacher, “Using Multiple Hash
Functions to Improve IP Lookups”, IEEE INFOCOM, 2001.

[2] S. Chung, J. Sungkee, H. Yoon and J. Cho, “A Fast and Updat-
able IP Address Lookup Scheme”, International Conference
on Computer Networks and Mobile Computing, 2001.

[3] R. Jain, “A Comparison of Hashing Schemes for Address
Lookup in Computer Networks,” IEEE Transactions on Com-
munications,, Vol. 40, No. 10, Oct 1992.

[4] C. Martinez and W.-M. Lin, “Adaptive Hashing Technique for
IP Address Lookup in Computer Networks,” 14th IEEE In-
ternational Conference on Networks (ICON 2006), September
2006, Singapore.

[5] A. Moestedt and P. Sjodin, “IP Address Lookup in Hardware
for High-speed Routing”, Proc. IEEE Hot Interconnects 6
symposium, Stanford, California, pp.31-39, August 1998.

[6] X. Nie, D.J. Wilson, J. Cornet, G. Damm, Yiqiang Zhoa,
“P Address Lookup Using A dynamic Hash Functio”, IEEE
Electrical and Computer Engineering, Canadian Conference,
Page(s) 1646 - 1651, May 1-4, 2005.

[7] S. Nilsson and G. Karlsson, “IP Address Lookup Using LC-
Tries”, IEEE Journal on Selected Areas in Communications,
pp. 1083-1092, June 1999.

[8] D. Pandya, C. Martinez, W.-M. Lin and P. Patel, “Advanced
Hashing Techniques for Non-Uniformly Distributed IP Ad-
dress Lookup”, Third IASTED International Conference on
Communications and Computer Networks (CCN2006), Octo-
ber 2006, Lima, Peru.

[9] D. Pao, C. Liu, L. Yeung and K.S. Chan, “Efficient Hardware
Architecture for Fast IP Address Lookup”, IEEE INFOCOM,
2002.

[10] M.A. Ruiz-Sanchez, E.W. Biersack, and W. Dabbous, “Survey
and Taxonomy of IP Address Lookup Algorithms”, IEEE
Network, Vol.15, pp.8-23, Mar./Apr.2001.

[11] V. Srinivasan and G. Varghese, “Faster Ip Lookups Using
Controlled Prefix Expansion”, Proceedings of SIGMETRICS
98, pp. 1-10, Madison, 1998.

[12] M. Waldvogel, G. Varghese, J. Turner and B. Plattner,
“Scalable High Speed Ip Routing Lookups”, in Proc. ACM
SIGCOMM’97, pp. 25-35, Sept. 1999.

[13] P.A. Yilmaz, A. Belenkiy, N. Uzun, N. Gogate and M. Toy,
“A Trie-based Algorithm for IP Lookup Problem”, Global
Telecommunications Conference (GLOBECOM) 2000.

[14] D. Yu, B. Smith, and B. Wei, “Forwarding Engine for Fast
Routing Lookups and Updates,” Global Telecommunications
Conference,, Globecom ’99, p.1556-p.1564.

142142

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 28, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

